MOSQUITO DISEASE ECOLOGY

Becky Trout Fryxell, Ph.D Medical & Veterinary Entomology University of Tennessee <u>RFryxell@utk.edu</u> Twitter: @DrVectorBio

ENTOMOLOGY & PLANT PATHOLOGY

Discover. Educate. Support.

INSTITUTE OF AGRICULTURE | UNIVERSITY OF TENNESSEE

GENERAL DEFINITIONS

- What's an arthropod?
 - Exoskeleton
 - Segmented Body
 - Jointed Appendages
- What's an insect?
 - 3 Tagma (head-thorax-abdomen)
 - 6 Legs (3 pairs)
 - Compound Eyes
 - 2 Antennae (1 pair)
- What's a vector?
 - Arthropod that transmits a pathogen
 - Bridge spatial & ecological gap btwn animals & humans
 - Increase opportunities for emergence (disperse)
- What is a vector-borne disease?
 - Infectious agent transmitted by an arthropod (vector) that causes a negative immune response (disease)

THE ETYMOLOGY OF THE ENTOMOLOGIST'S EPIDEMIOLOGY

- Vectors TRANSMIT agents...
 - Ex. viruses, bacteria, protozoa, nematodes
 - transmit is a verb
- Pathogens (agents) cause symptoms which leads to a disease diagnosis
- Vectors do not TRANSMIT diseases & they do not VECTOR agents
 - vector is a noun
- The host responds to infection of an agent and they produce a response...which is classified as a disease
- Correct: A vector transmits a pathogen which causes a symptom and the disease is diagnosed

Biological – often necessary

- Propagative
 - <u>Multiplication</u> of pathogen w/in vector (bacteria/virus)
- Cyclodevelopmental
 - <u>Development</u> of pathogen w/in vector (W. bancrofti)
- Cyclopropagative
 - <u>Multiplication & Development</u> of pathogen w/in vector (*Plasmodium falciparum*)

BIOLOGICAL TRANSMISSION ROUTES

• Vertical:

- **Trans-ovarial**
 - From female (<male) to offspring

• Horizontal:

- **Trans-stadial**
 - One life stage (instar) to the next
 - Larvae to pupae to adult –WNv in some mosquitoes
 - Trans-seasonal
 - One season to the next, especially in overwintering / diapausing vectors

World Cases = Everyone in the Southeast + Midwest

Deaths = population of Knox county

Estimated malaria burden by WHO region in 2017

WHO Region	Malaria cases	Malaria deaths
African	200 million	403 000
Americas	976 000	630
Eastern Mediterranean	4.4 million	8300
South-East Asia	11.3 million	19 700
Western Pacific	1.9 million	3620
World	219 million	435 000

Source: World malaria report 2018

WORLD MALARIA DAY (APRIL 25)

- Every 2 minutes, a child dies from malaria
- Each year 200+million new cases are reported
- Management
 - ITNs, Case management, antimalaria pills, targeted insecticides

ZERO MALARIA STARTS WITH ME

- Grassroots campaign that aims to keep malaria
 - o high on the political agenda,
 - mobilize additional resources, and
 - empower communities to take ownerships of malaria prevention and cure

Political <u>will</u> to reduce malaria deaths Strategic information to <u>drive</u> impact Better guidance, policies, and strategies A <u>coordinated</u> national malaria response

HUMAN MALARIA

- Vector: Anopheles gambiae Africa (30-40 spp.)
 - Only horizontal transmission via mosquito
- Pathogen: *Plasmodium* spp. (n = 5 species)
 - P. falciparum (most common)
- Host: Human
 - >219 million cases / year
 - 17% of childhood deaths
- Reservoir: None
 - 5 spp. w/ macaque reservoir
- Human risk factors
 - Young, Pregnant, Immunocompromised
 - Behavioral factors
- Symptoms in ~5-10 days
 - Cold stage, then hot stage, then sweating stage

MALARIA: ECOLOGY & DISTRIBUTION

Worldwide lots of vectors... why is malaria not everywhere?

MALARIA: ENVIRONMENT IS A CHALLENGE

Water is everywhere during rainy season

Poor roads & infrastructure

Cultural Norm

PLASMODIUM LIFE CYCLE-LIVER / BLOOD / MOSQUITO

https://www.youtube.com/watch?v=2O3YrdUZQ5U&t=160s

MALARIA MANAGEMENT

Integrated ITNs, Case Management, Antimalarial Pills, Targeted Insecticides

Pyrethroids Treatments

- -Individual & Community Protection
- -Strong Residuals
- -Quick Knockdown
- -Low Mammalian Toxicity

AVIAN MALARIA

- Vector: mosquitoes (different genera for different locations)
- Protozoan Pathogen
 - Plasmodium relictum (spp.)
 - Haemoproteus spp.

- Host: Birds....local vs migrating birds
- Reservoir: migrating birds (?)
- Clinical Signs
 - Anemia, weakness

CANINE HEARTWORM – DIROFILARIA NEMATODES Biological vectors (cyclopropagative!) They develop & replicate within mosquito host Vector- typically Aedes vexans mosquitoes Hosts: canines, coyotes, felines some human cases Mosquito Transmission & Life Cycle L3 nematode transmitted Larva Larva arva (stage 1) (stage 2) (stage 3) to canine http://www.youtube.com/watch?v=P6F9KApgkII Mosquito bites dog

Adult heartworms

in right ventricle

Used Under License Copyright© Lifelearn Inc. Larva (stage 3-

LIFE CYCLE OF THE HEARTWORM

Clinical Signs Vary: No sign – cough – cough/exercise intolerance – difficulty breathing hepatomegaly, ascites - death

HEARTWORM INCIDENCE

Treatments

Organic arsenical compounds

Melarsomine dihydrochloride (intramuscular injection) Must keep exercise to a minimum

Preventative

reported cases from these areas.

Ivermectin, Milbemcyin, Selamectin, Moxidectin

YELLOW FEVER: INTRODUCTION TO USA

500,000 deaths

US capital moved from Philadelphia to Washington DC

New York's Greenwich Village became 'the village' b/c it was safe haven outside of the city

Napolean abandoned his North American conquests b/c 23,000 troops died

YELLOW FEVER

Considered a "stranger's disease": Rite of passage to become acclimated to fevers and for the virus to hone in on new blood

Headache

Bleeding

Jaundice

Muscle Aches

Hepatomegaly

YELLOW FEVER: MEMPHIS 1878

SIGN UP FOR OUR E-NEWSLETTER 🖂 ASK RDC 🛍 SUBMIT YOUR RIVERFRONT PHOTO

RIVERFRONT DEVELOPMENT CORPORATION

Home Riverfront Projects Riverfront Parks News Riverfront Development Corporation Evel

Martyrs Park

Features

Martyrs Park is the recipient of the newest portion of the Riverwalk along with new lighting, benches, drinking fountains and landscaping

1878- Epidemic from Brazil to Ohio Mississippi Valley 20k lives & \$200 million Worst urban disaster in American History SFO earthquake, Johnston flood, Chicago Fire Memphis- >5k lives (~1/3 population) Fatality Rate: 70% Caucasian vs 6.7% African American

Pres. Hayes

Memphis 1878

George Sternberg Carlos Finlay

Aedes aegypti

George Waring Redesigned the sewer system to eliminate germs Finlay's Discoveries (Notes) Hemorrhaging- infection in blood Pathogen disappears once temperature drops Epidemics were sporadic, Aedes aegypti multiple blood meals mosquito disappears below 60°F 1881- presented his findings – The mosquito hypothetically considered as the agent of transmission of yellow fever Seemed to solve the problem

Post-1878

20 years - no epidemic

1898

- USS Maine explodes & sinks in Havana
- Spanish- American war (April to August)
- US gains Philippine Islands, Puerto Rico, & Guam
- Cuba became independent
- August: YF quickly spread amongst the Americans Theodore Roosevelt drafted a request to Washington that it withdraw the Army from Cuba. By the time of his letter, 75% of the force in Cuba was unfit for service

Money and political power to 'solve yellow fever'

"In no area did the US lag behind the rest of the world so much as in its study of the life sciences and medicine." -John Barry author of *The Great Influenza*

George Sternberg (Surgeon General)

Reed

Sanitation & Typhoid

<u>May 23, 1900</u>

Sternberg wrote a letter to the army to send a medical board (~commission) to Havana to study all infectious disease verbal focus on YF

Yellow Fever- Post War Cuba outbreak 1900

Contacted Finlay <u>Kept Records</u> When & where people were sick Autopsied all deaths Detailed records of mosquitoes

George Sternberg

YELLOW FEVER COMMISSION

Started work at the end of the season, so no active cases

Dr. Henry Rose Carter- noted 5-7 day period between cases

Reed & Carroll –test tubes & vomit of patient samples *Reed got homesick and left for Washington DC

Lazear- mosquitoes from all over the island Notes: symptoms, where fever broke, mosquito collections in the area

EPIDEMIOLOGY OF YELLOW FEVER REED, CARROLL, AGRAMONTE, LAZEAR

Disprove Sarnelli bacteria Cultures from patients with yellow fever Cultures from autopsies

TABLE I.

BLOOD CULTURES DURING LIFE.				тавце II.					
Day of Disease.	Character of Attack.	No. of Cultures.	No. of Bouillon Tubes Inoculated.	B. Icteroides.	No. of Case.	Day of Disease.	Time of Autopsy.	Source of Culture.	B. Icter- oides.
1st.	Severe. Well-marked.	3 1	4 (3 agar plates.) 4	Negative.	1	7th.	2 hours after death.	Blood, liver, spleen, kidney.	Neg' tive
2nd.	Mild. Severe. Well-marked	1 6	3 18 2	66	2	6th.	13 hours after death.	Blood, liver, spleen, kidney.	"
،، 3rd.	Mild. Severe.	17	3 (6 agar plates.) 18 (6 agar plates.)	6 C 6 G	3	4th.	8 hours after death.	Blood, liver, spleen, kidney.	••
" 4th.	Mild. Severe.	2 5	4 14	44 46	4	8th.	4 hours after death.	Abdominal cavity, blood, liver, spleen, kidney, bile, duodenum,	"
66 66 5412	Well-marked. Mild.	2 1	6 1 12 (2	66 66	5	4th.	4 hours after death	Blood, liver, spleen, kidney, bile,	
5th. "	Severe. Well-marked. Mild.	5 1 1	12 (3 agar plates). 3 1	44 44 44	6	6th.	6½ hours after death.	Abdominal cavity, blood, peri- cardial fluid, lung, spleen, kid-	
6th. "' 7th.	Severe. Well-marked. Severe.	4 1 1	6 2 2	4.6 4.6	7	6th.	50 minutes	ney, liver, bile, duodenum. Blood, lung, liver, spleen, kid-	
8th.	Well-marked. Severe. Well-marked.	1 2 1	2 6 2	66 66	8	6th.	¹ / ₂ -hour after death.	Blood, lung, liver, spleen, kidney, urine, small intestine.	
9th.	Severe.	ĩ	2	<i></i>	9	4th.	2 hours after death.	Liver, spleen, small intestine.	"
Number of cultures			10	5th.	7 hours after death.	Liver, kidney, spleen, small in- testine.	"		
	" " bouillo " " agar pl	n tubes inoc ates	ulated	115 15	11	3rd.	½-hour after death.	Liver, kidney, spleen.	• •

ETIOLOGY OF YELLOW FEVER REED, CARROLL, AGRAMONTE, LAZEAR Dr. Henry Rose Carter- noted 5-7 day period between Mosquatesas a Host of the Parasite of Yellow Fever

The circumstances under which Carter worked were favorable for recording with considerable accuracy the interval between the time of arrival of infecting cases in isolated farm-houses and the occurrence of secondary cases in these houses. According to Carter "the period from the first (infecting) case to the first group of cases infected, at these houses, is generally from two to three weeks."

Finlay's report

His present views on this subject may be stated in his own language: "First, reproduction of the disease, in a mild form, within five to twenty-five days after having applied contaminated mosquitoes to susceptible subjects. Second, partial or complete immunity against yellow fever obtained when even no pathogenous manifestation had followed those inoculations." (Medical Record, Vol. 55, No. 21, May 27, 1899.)

Without reviewing the cases regarded as mild forms by the author of this theory, we believe that he has not, as yet, succeeded in reproducing a well marked attack of yellow fever, within the usual period of incubation of the disease, attended by albumen and jaundice, and in which all other sources of infection could be excluded.

EPIDEMIOLOGY OF YELLOW FEVER

TABLE III.

INOCULATION OF NON-IMMUNE INDIVIDUALS THROUGH THE BITE OF MOSQUITOES (C. FASCIATED).

No. of Case.	Age.	Nativity.	Date of Inoculation.	Character of attack and No. of patients bitten.	Day of Disease.	Time of between in- fection of mosquito and inoculation.	No. of Mosqui- toes.	Result.	Remarks.
12345678	24 20 24 34 22 20	U. S. U. S. U. S. U. S. U. S. U. S. U. S. U. S.	August 11th. " 11th. " 12th. " 12th. " 12th. " 12th. " 14th. " 16th. " 18th. " 19th.	Mild1 Very mild1 "1 "1 "1 "1 Severe1 Very mild1 Severe1	7th. 5th. 5th. 5th. 5th. 5th. 2nd. 5th. 1st. 2nd.	5 days. 5 '' 6 '' 8 '' 10 '' 3 '' 13 '' 3 '' 6 ''	One. " " " "	Negative. " " " "	
9	28	U. S.	•• 25th.	Mild1 Severe1	2nd. 1st. 2nd.	4 " 2 "	One.	"	
10	46	England.	" 27th.	"1 Mild1 Severe1 Mild1	2nd. 1st. 2nd. 2nd.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	One.	Positive.	Severe at- tack of yes low fever.
11	24	0. s.		Mild2 Severe2	2nd. 2nd. 2nd and 9th.	4 and 10 days. 2 and 8 "	One.		
Virus had to stay in Mild			1st, 2nd and 2nd. 1st and 2nd. 2nd.	2, 8 and 16 " 6 and 10 " 12 "	} One.	Positive.	Well		
mosquito for a period of timeSevere1 Mild3 Severe3 Mild1			1st. 1st, 2nd and 2nd. All on 1st. 2nd.	2 " 4,6 and 10 " 2,4 and 8 " 6 "	One.		marked at tack of ye low fever.		
- (~									

EPIDEMIOLOGY OF YELLOW FEVER Case 10: Dr. Carroll- survived Poor case b/c he contacted YF patients

Case I. Yellow fever following, within the usual period of incubation, the bite of an infected mosquito, (Culex fasciatus)

EPIDEMIOLOGY OF YELLOW FEVER Case 11: patient XY (William E. Dean) 4 bites = same mosquito as Carroll & 3 more ...serious infection Chart II. Yellow Sever Following, within the usual period of incubation, the bite of an infected mosquito, (Cutex Jasciatus)

Excellent Case... New to tropics On base for >2 mo.

Taken in connection with Case 11, in which we have been unable to find any other source of infection than the bite of an infected mosquito, five days preceding the attack, the case of Dr. C. (Case 10, Table III) becomes strongly confirmatory of the same origin.

EPIDEMIOLOGY OF YELLOW FEVER

In Lazear's notebook, Lazear wrote...

Sept. 13- guinea pig had been bitten by a mosquito that developed from an <u>egg</u> laid by a mosquito that fed on a number of YF cases

5 days later...

EPIDEMIOLOGY OF YELLOW FEVER

Case. Dr. Jesse W. Lazear, Acting Assistant Surgeon, U. S. Army, a member of this board, was bitten on August 16, 1900, (Case 6, Table III), by a mosquito (*Culex fasciatus*) which ten days previously had been contaminated by biting a very mild case of yellow fever (fifth day). No appreciable disturbance of health followed this inoculation.

September 13, 1900, (forenoon), Dr. Lazear, while on a visit to Las Animas Hospital and while collecting blood from yellow fever patients for study, was bitten by a Culex mosquito (species undetermined). As Dr. L. had been previously bitten by a contaminated insect without after-effects, he deliberately allowed this particular mosquito, which had settled on the back of his hand, to remain until it had satisfied its hunger.

On the evening of September 18th, 5 days after the bite, Dr. L. complained of feeling "out of sorts," and had a chill at 8 p. m.

September 19th, 12 o'clock noon, T. 102.4°, pulse 112. Eyes injected, face suffused; 3 p. m., T. 103.4°, pulse 104; 6 p. m., T. 103.8°, pulse 106. Albumen appeared in the urine. Jaundice appeared on the third day. The subsequent history of this case was one of progressive and fatal yellow fever, the death of our much lamented colleague having occurred on the evening of September 25, 1900.

JESSE LAZEAR'S MEDICAL CHART

Lazear died from the virus passing from female to offspring (transovarial transmission)

EPIDEMIOLOGY OF YELLOW FEVER

From our study thus far of yellow fever, we draw the following conclusions:

1. Bacillus icteroides (Sanarelli) stands in no causative relation to yellow fever, but, when present, should be considered as a secondary invader in this disease.

2. The mosquito serves as the intermediate host for the parasite of yellow fever.

In response to this paper,

Italy: "silliest beyond compare"

US: "\$10,000 was used to fund further mosquito experiments at a camp- to be named Camp Lazear"

CAMP LAZEAR

wire netting screen

SIDE B

SIDE A

YELLOW FEVER: ERADICATION FROM US

- Rockefeller Foundation's International Health Board- vector control
- Mosquito Control same mosquito transmits
 Dengue fever- DDT

the second s	
	INTERNATIONAL CERTIFICATE VACCINATION AS APPROVED BY THE WORLD HEALTH ORGANIZATIO
- 0	CERTIFICAT INTERNATIONAL D VACCINATION APPROVE PAR L'ORGANISATION MONDIALE DE LA
	TRAVELER'S NAME-NOM DU VOYAGEUR
-	ADDRESS-ADRESSE (Number-Numero) (Street
-	(Cry-Vile)
	(County-Departement)
TA	U.S. DEPARTMENT OF HEALTH AND HUMAN SER PUBLIC HEALTH SERVIC PUBLIC HEALTH SERVIC

- Max Theiler- developed vaccine in 1930s and won Nobel Prize in 1951
 - Same vaccine
- Limit outdoors during peak hours
 Proper clothing
- Insect repellent

(https://www.epa.gov/insect-repellents/find-repellent-right-you)

DENGUE: CONSTANT US THREAT 4 related viruses make vaccine development difficult

Symptoms show 4-7d after bite & last for 3-10d

HIGH fever & headache, eye pain, joint pain, rash, low white cell count https://www.cdc.gov/dengue/index.html

ZIKA VIRUS

Rockefeller Foundation

- Arbovirus Discovery
 - 1947 sentinel macaque
 - 1948 mosquito
 - Aedes africanus
 - o1954 human

• Other hosts Elephants, goats, hippos, lions, rodents, zebras...etc.

ZIKA SLOWLY SPREADS EAST- INDIRECT

• African vectors:

 Aedes aegypti, Aedes albopictus, Aedes luteocephalus, Aedes vittatus

Asian vectors

- Aedes aegypti & Aedes albopictus
- Only 14 human cases documented

Disease Ecology Mosquito Lesson:

ZIKA: YAP ISLANDS & FRENCH POLYNESIA

YAP 2007-2014 outbreak

- 49 confirmed cases (59?)
- 73% of Yap residents
 >3yrs infected
 - 18% symptomatic & 82% asymptomatic
 - **Co-infections**
 - Zika, Chikungunya, & Dengue
- Aedes hensilli suspected vector

2013 FP

- o 66% of population
 - 28,000 symptomatic & ~140,000 asymptomatic
- 1st suspected case of Guillain-Barré syndrome
- Retrospective Case Review (2015)
 - Increase in microcephaly
 - Evidence of perinatal transmission
- Asian Genotype in Ae. aegypti & Ae. albopictus

ZIKA: SEXUAL TRANSMISSION

- Senegal, 2008 Entomologists
- Vaccinated against yellow fever
- Sick with rash

Clinical & serologic evidence indicated 2 American scientists contracted Zika virus infections while working in Senegal in 2008. One of the scientists transmitted this arbovirus to his wife after returning home. Direct contact is implicated as the transmission route, most likely as a sexually transmitted infection.

- Sexual transmission in US
- Semen collected from a man with Zika virus had virus particles detectable by RT-PCR 62 days after fever
 - **RT-PCR of blood at that time was negative(!)**
 - Summer 2016: female to male transmission

Update: Interim Guidance for Prevention of Sexual Transmission of Zika Virus – United States, 2016 Weekly/April 1, 2016/65(12):323-325

Probable

Non-Vector-borne

Brian D. Foy, Kevin C. Kobylinski, Joy L. Chilson Foy, Bradley J. Blitvich, Amelia Travassos da Rosa, Andrew D. Haddow,

Transmission of Zika Virus,

Colorado, USA

ZIKA: CONFIRMED LINK TO MICROCEPHALY

NEXT GENERATION MOSQUITO MANAGEMENT

- **Community engagement**
- Abuzz app detects mosquitoes via wingbeat frequency

Wolbachia-infected mosquitoes

- To displace; affects mating (Mosquito Mate) https://mosquitomate.com/?v=3.0
- To replace; affects pathogen (O'Neill Lab) https://research.monash.edu/en/persons/scott-oneill
- "GMO" mosquito

Oxitec self-limiting mosquitoes

http://www.oxitec.com/our-solution/technology/ *

https://www.youtube.com/watch?v=BTYeIY7aqNY

CRISPR/CAS9 - gene drive -

https://www.nature.com/articles/s41598-017-02744-7

RNAi – gene slicing

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5371932/

Mosquito Lesson: Disease Ecology

MOSQUITO-BORNE PATHOGENS WILL LIKELYCONTINUETO BE A DISEASE OF POVERTYRemove

Remove containers holding water

Wear repellents

Fix window screens